Regulation of sphingolipid synthesis through Orm1 and Orm2 in yeast.
نویسندگان
چکیده
Sphingolipids are crucial components of membranes, and sphingolipid metabolites serve as signaling molecules. Yeast Orm1 and Orm2 belong to a conserved family of ER membrane proteins that regulate serine palmitoyltransferase, which catalyzes the first and rate-limiting step in sphingolipid synthesis. We now show that sphingolipid synthesis through Orm1 is a target of TOR signaling, which regulates cell growth in response to nutritional signals. Orm1 phosphorylation is dependent on the Tap42-phosphatase complex, which acts downstream of TOR protein kinase complex 1. In temperature-sensitive tap42-11 cells, impaired Orm1 phosphorylation occurs concomitantly with reduced sphingolipid synthesis. A second mechanism for regulating sphingolipid synthesis is through control of Orm2 protein level. The Orm2 protein level responds to ER stress conditions, increasing when cells are treated with tunicamycin or DTT, agents that induce the unfolded protein response (UPR). The sphingolipid intermediates (long chain base and ceramide) are decreased when ORM2 is overexpressed, suggesting that sphingolipid synthesis is repressed under ER stress conditions. Finally, in the absence of the Orms, the UPR is constitutively activated. Lipid dysregulation in the absence of the Orms might signal to the ER from the plasma membrane because UPR activation is dependent on a cell surface sensor and the mitogen-activated protein kinase (MAPK) cell wall integrity pathway. Thus, sphingolipid synthesis and the UPR are coordinately regulated.
منابع مشابه
Orm1 and Orm2 are conserved endoplasmic reticulum membrane proteins regulating lipid homeostasis and protein quality control.
Yeast members of the ORMDL family of endoplasmic reticulum (ER) membrane proteins play a central role in lipid homeostasis and protein quality control. In the absence of yeast Orm1 and Orm2, accumulation of long chain base, a sphingolipid precursor, suggests dysregulation of sphingolipid synthesis. Physical interaction between Orm1 and Orm2 and serine palmitoyltransferase, responsible for the f...
متن کاملProtein kinase Ypk1 phosphorylates regulatory proteins Orm1 and Orm2 to control sphingolipid homeostasis in Saccharomyces cerevisiae.
The Orm family proteins are conserved integral membrane proteins of the endoplasmic reticulum that are key homeostatic regulators of sphingolipid biosynthesis. Orm proteins bind to and inhibit serine:palmitoyl-coenzyme A transferase, the first enzyme in sphingolipid biosynthesis. In Saccharomyces cerevisiae, Orm1 and Orm2 are inactivated by phosphorylation in response to compromised sphingolipi...
متن کاملTORC1-regulated protein kinase Npr1 phosphorylates Orm to stimulate complex sphingolipid synthesis
The evolutionarily conserved Orm1 and Orm2 proteins mediate sphingolipid homeostasis. However, the homologous Orm proteins and the signaling pathways modulating their phosphorylation and function are incompletely characterized. Here we demonstrate that inhibition of nutrient-sensitive target of rapamycin complex 1 (TORC1) stimulates Orm phosphorylation and synthesis of complex sphingolipids in ...
متن کاملThe protein kinase Sch 9 is a key regulator
The Saccharomyces cerevisiae protein kinase Sch9 has been demonstrated to be an in vitro and in vivo effector of sphingolipid signalling. In this study, the link between Sch9 and sphingolipid metabolism in S. cerevisiae was examined in vivo based on the observation that the sch9Δ mutant displays altered sensitivities to various inhibitors of sphingolipid metabolism, i.e. myriocin and aureobasid...
متن کاملA genome-wide enhancer screen implicates sphingolipid composition in vacuolar ATPase function in Saccharomyces cerevisiae.
The function of the vacuolar H(+)-ATPase (V-ATPase) enzyme complex is to acidify organelles; this process is critical for a variety of cellular processes and has implications in human disease. There are five accessory proteins that assist in assembly of the membrane portion of the complex, the V(0) domain. To identify additional elements that affect V-ATPase assembly, trafficking, or enzyme act...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of cell science
دوره 125 Pt 10 شماره
صفحات -
تاریخ انتشار 2012